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We show that a simple, general, and easily reproducible method for generating non-uniform sampling
(NUS) schedules preserves the benefits of random sampling, including inherently reduced sampling arti-
facts, while removing the pitfalls associated with choosing an arbitrary seed. Sampling schedules are gen-
erated from a discrete cumulative distribution function (CDF) that closely fits the continuous CDF of the
desired probability density function. We compare random and deterministic sampling using a Gaussian
probability density function applied to 2D HSQC spectra. Data are processed using the previously pub-
lished method of Spectroscopy by Integration of Frequency and Time domain data (SIFT). NUS spectra
from deterministic sampling schedules were found to be at least as good as those from random schedules
at the SIFT critical sampling density, and significantly better at half that sampling density. The method
can be applied to any probability density function and generalized to greater than two dimensions.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction methods [10,12–23]. However, the price is variability due to mod-
Non-uniform sampling (NUS) is a powerful method for signifi-
cantly reducing NMR data acquisition times and improving spec-
tral resolution. This is especially true at stronger magnetic fields
where simultaneously realizing the benefits of high resolution
and desired bandwidth requires more extensive sampling. NUS
has been successfully applied to a number of solution NMR prob-
lems that require high dimensionality and resolution, including
assigning the signals and determining the structures of large solu-
ble proteins [1] and solubilized membrane proteins [2], studying
highly degenerate systems [3,4], measuring residual dipolar cou-
plings [5], characterizing metabolic mixtures from cellular extracts
[6], and studying transient systems, including proteins within
whole cells [7]. Furthermore, NUS is spreading to solid state NMR
where it has already proven useful for assignments in multidimen-
sional experiments [8], unambiguous restraints in structure deter-
mination [9], multiple quantum magic angle spinning experiments
on quadrupolar nuclei [10], and PISEMA experiments [11].

A problem with NUS is that it introduces a great deal of variabil-
ity into experimental protocols, both with respect to sampling
schedules and data processing algorithms. The simplest processing
of NUS data is the discrete Fourier transform. Improved results can
be obtained using maximum entropy and other model-dependent
ll rights reserved.
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eling assumptions. Recently, it has been shown that modeling can
be avoided by using knowledge of zeroes in the frequency domain
to replace information missing in the time domain [24]. This pro-
cess of Spectroscopy by Integration of Frequency and Time domain
information (SIFT) is rapid and can be pursued with various, but
well-defined, degrees of aggressiveness (in identifying frequency
zeroes and in the ratio of time points dropped to frequency zeroes
identified).

The situation is more complex with respect to sampling sched-
ules. The idea has always been to sample more heavily at early
times when the signal is strongest and only as much at long times
as is necessary to resolve signals of interest. Early NUS used expo-
nential sampling distributions, roughly paralleling the decay in the
signal intensity [25]. However, it has recently been shown that
Gaussian sampling provides better results [26]; apparently, the
greater emphasis on sampling at early times need not entail undue
sacrifice of sampling at late times.

Generating deterministic, and therefore easily reproducible,
sampling schedules is straightforward, whether according to an
exponential distribution [25] or any other distribution (see below).
However, random sampling has become popular since it has been
shown to decrease artifacts that arise from sampling below the
Nyquist density [26,27] and minimize spectral aliasing. The diffi-
culty is that random sampling creates two further problems:
choosing a seed number and reproducibility. As Hyberts et al. have
recently demonstrated in great detail [28], the choice of seed num-
ber used to generate a random schedule can yield widely varying
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Fig. 1. HSQC spectrum of GB1 acquired with full uniform sampling of 128 t1 points.
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spectral quality. To ascertain the quality of spectra obtained with
random sampling, one would need to collect spectra with many
different seeds, defeating the time-saving benefits of NUS. Second,
while it is difficult to define exactly what criteria should be used to
judge the ‘‘best’’ schedule, a goal we do not attempt to pursue here,
it is generally desirable that experimental results be reproducible.
In principle this is not achievable with random sampling unless all
the sampled points are specified for each spectrum (or the specific
random number generator algorithm and precise seed are sup-
plied). Thus, the benefits of random sampling must be weighed
against the potential pitfalls of selecting a bad seed and the desire
for straightforwardly reproducible results.

Here we show that a deterministic approach can preserve the
benefits of random sampling (i.e., inherently reduced spectral arti-
facts) while avoiding the need for an arbitrary seed, and the atten-
dant possibility of generating a poor sampling schedule. The
method is a simple and entirely reproducible alternative to sto-
chastic sampling. We compare the two approaches in the context
of 2D HSQC experiments on the b1 domain of immunoglobulin
binding protein G (GB1). Importantly, our approach is entirely
reproducible and can be generalized to experiments beyond two
dimensions and to sampling distributions other than Gaussian.

2. Methods

2.1. Sample preparation and NMR spectroscopy

U-15N labeled GB1 (mutant T2Q) was prepared as described
previously [24]. The solution HSQC data were recorded at 278 K
with a gradient-enhanced scheme [29] at 591 MHz (1H Larmor fre-
quency) using a custom-built console and software and a Z-SPEC
5 mm triple-resonance IDTG590-5 probe (NALORAC Co., CA). Four
scans were averaged at a recycle delay of 2 s. The 15N bandwidth
of 67 ppm (3984 Hz) was uniformly sampled with 128 points,
and the 1H bandwidth of 13.6 ppm (8013 Hz) was uniformly sam-
pled with 1024 complex points. The total acquisition time was
34 min. The maximum evolution time in the full data set was
32 ms. The master spectrum corresponding to the full data set is
shown in Fig. 1.

2.2. Generation of random NUS schedules

Random on-grid NUS schedules were generated with a Gaussian
probability distribution, exp(�t2/2r2), by first generating corre-
sponding off-grid optimized Gaussian sampling using the ‘‘time-
tab_gen’’ program available from the Warsaw NMR group: http://
nmr700.chem.uw.edu.pl/. To conform to a grid, the evolution time
of each point was increased just enough to coincide with the first
unoccupied grid point.

2.3. Generation of deterministic NUS schedules

A unique sampling schedule is generated from the cumulative
distribution function (CDF) of a given desired probability density
function (PDF). The CDF is the integral of the PDF and can always
be determined, if necessary by numerical methods. A sampling
schedule which closely approximates the desired CDF will auto-
matically closely approximate the desired PDF.

Here we provide details of the scheduling algorithm for the
Gaussian PDF

pdfðtÞ ¼ expð�t2=2r2Þffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p

where t ranges from –1 to +1. The corresponding cumulative dis-
tribution function for positive t is
cdfðtÞ ¼ erf t=
ffiffiffiffiffiffiffiffiffi
2r2
p� �

where erf is the error function. We map the uniform sampling grid
to the time domain region between 0.0 and 1.0 using t = IGRID/NGRID,
where NGRID is the total number of grid points and IGRID ranges be-
tween 1 and NGRID. This conventional mapping is completely general
given the freedom to choose r. The CDF is scaled to obtain NSCHED

acquisition points

NSCHED
cdfðtÞ

cdfð1:0Þ

� �

and discretized by rounding the value off to the nearest integer. This
discretized CDF is calculated for each grid point and those grid
points corresponding to the step increases in value are chosen as
the points to be experimentally acquired. In order to facilitate later
NMR processing, we move the first scheduled point to the first grid
point, in the rare case that it is not already selected. This algorithm
can be used with only trivial modifications for any probability dis-
tribution other than Gaussian.

2.4. Sift

SIFT, uses knowledge of zeros in the frequency domain to fill
gaps in the time series without affecting the acquired points
[24]. Here we use the most conservative form of SIFT which
refrains from identifying dark regions between signals by either
precedent or thresholding. Rather, dark regions are included at
the fringes of the spectrum by expanding the bandwidth. This
increased bandwidth decreases the dwell times proportionately.
However, as shown in the original work, the freedom to sample
non-uniformly nevertheless improves S/N. Furthermore, the
results only degrade slowly when sampling is reduced beyond a
simple 1:1 trade-off of time points for frequency points.

The SIFT cycle has been implemented in MATLAB (http://
people.brandeis.edu/~herzfeld/SIFT), calling for input files that
contain (1) the sampling schedule, (2) the corresponding time do-
main NUS data, and (3) specification of the dark frequency points.
In the present application, signals occur only between 132 and
101 ppm in the 15N dimension (see Fig. 1). All areas outside this
range were defined as dark and amount to half of the frequency
points. Therefore, for SIFT in this experiment, 50% NUS is critical
and 25% NUS is subcritical.

http://nmr700.chem.uw.edu.pl/
http://nmr700.chem.uw.edu.pl/
http://people.brandeis.edu/~herzfeld/SIFT
http://people.brandeis.edu/~herzfeld/SIFT


298 M.T. Eddy et al. / Journal of Magnetic Resonance 214 (2012) 296–301
2.5. Data processing

All time domain data (SIFTed or not) were processed in MATLAB
by applying a cosine-squared function in t1 that reached zero at
the maximum evolution time, and zero filling to 4096 points in
the direct dimension and 512 points in the indirect dimension.
Spectra were then exported to Sparky for viewing and plotting
[30]. Contour levels were set to 10% of the highest peak intensity
in each spectrum. SIFTed data were processed by first applying
SIFT. The resulting time domain data were then processed as
described above.

3. Results

To evaluate the deterministic approach we compared results for
Gaussian NUS with a random schedule and our deterministic sche-
dule. The initial comparison used 64 t1 points (50% of full uniform
sampling density) and r = 0.5. As shown in Fig. 2, the results are
similar for the two schedules at this level of sampling. With SIFT
processing, both faithfully reproduce the original HSQC spectrum.

Often more aggressive NUS is desired. But the sparser the sam-
pling, the more room for mischief there is in random sampling.
Fig. 2. Critical HSQC spectra of GB1 from 64 Gaussian distributed t1 points with sigma =
the spectrum resulting from the random schedule without SIFT processing, (d) the spe
resulting from the deterministic schedule without SIFT processing and (f) the spectrum
Fig. 3 shows the results of Gaussian NUS with r = 0.5 at the 25%
level (i.e., with only 32 t1 points). While the results are degraded
for both the random and the deterministic sampling schedules,
the effect is milder for the latter. Looking at the unSIFTed spectra
at the top of the figure, we see that the deterministic schedule is
significantly less noisy in the bright region (i.e., the area of interest
between 132 and 101 ppm in the 15N dimension and 10.9 and
6.1 ppm in the 1H dimension). Since SIFT works by imposing zeroes
in the known dark regions of the spectra, pushing noise outside of
the bright region and into the dark regions produces a less noisy
SIFTed spectrum. Deterministic sampling is presumably accom-
plishing this by avoiding large gaps between consecutive points.

On the other hand, the deterministically sampled spectra show
some aliasing in the nitrogen dimension. This indicates excessive
uniformity in the gaps between points, which corresponds to a
probability distribution that is too flat for such a small number
of points. Fig. 4 shows that choosing the 32 points with a tighter
Gaussian (r = 0.3, comparable to the fraction of grid points sam-
pled) provides cleaner results, not only for deterministic sampling,
but also for random sampling. The improved quality is at least par-
tially due to increased sampling at earlier time points. At the same
time, the line widths remain good in spite of reduced sampling at
0.5: (a) the random sampling schedule, (b) the deterministic sampling schedule, (c)
ctrum resulting from the random schedule with SIFT processing, (e) the spectrum
resulting from the deterministic schedule with SIFT processing.



Fig. 3. Subcritical HSQC spectra of GB1 from 32 Gaussian distributed t1 points with r = 0.5: (a–e) as in Fig. 2.
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long evolution times. Overall, the deterministic sampling schedule
generates fewer artifacts than the random schedule; it has less
noise in the bright region and somewhat better post-SIFT results.

It should be noted that the comparisons made here all used ran-
dom sampling based on the single seed embedded in the ‘‘time-
tab_gen’’ program (see Section 2). Of course, there may be better
seeds than the one provided by this utility. But the good seeds
are likely to vary from experiment to experiment (e.g., depending
on the chosen level of sampling and value of r) and finding them
would involve more effort than full sampling to begin with, there-
by totally defeating the benefits of NUS.
4. Discussion

Problems with random sampling have been previously
reported, as noted above. Methods to overcome these problems
have also been proposed, including jittered sampling [31], random
sampling with constraints [32], and Poisson disk sampling [32].
These methods aim to minimize the clustering of samples in the
NUS schedule, providing smoother sampling while maintaining
the benefits of randomization. Our method produces the same
sought after effects with a more straightforward and reproducible
approach that does not require calculation of additional sampling
parameters and appears to give results that are at least as good
as a typical random method. Spectra recorded via Poisson disk
sampling or random sampling with constraints have been reported
to show an inhomogeneous distribution of sampling noise, with
less noise observed near real peaks [32]. As we observe a similar
effect with our deterministic approach, it seems that we have
achieved similar favorable noise characteristics in a simpler fash-
ion. Moreover, since SIFT fills in the FID by applying known fre-
quency zeros in the dark regions, this type of noise shaping is
especially suited to SIFT processing.
5. Conclusions

Deterministic NUS, using a CDF corresponding closely to the
targeted probability distribution, appears to provide a reliable
and effective alternative to random NUS. Smoothing the sampling
function (i.e., avoiding unnecessarily large gaps between time
points) produces less noise in bright areas, thereby leading to bet-
ter results, especially with SIFT processing. Aliasing is easily
avoided at lower sampling levels by choosing steeper probability
distributions.



Fig. 4. As in Fig. 3, but with r = 0.3.
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